MATHEMATICS EXAM QUESTIONS FOR JSS2 SECOND TERM

JSS2 SECOND TERM MATHEMATICS EXAMINATION QUESTIONS – EDUDELIGHT.COM

SECOND TERM EXAMINATION

Examination malpractices may lead to a repeat of the subject or suspensions don’t be involved.

Subject: Mathematics   Class: J S S 2 Section A

1.        Find the value of 40+628+320 (a)680 (b) 625 (c) 420 (d) 348

14.      If p=9, q=3, evaluate (𝑝)2 (a) 9 (b) 15

π‘ž

(c) 18 (d) 81

9

15.      Find HCF of 7x3y and 14x2y3 is (a) 7x2y (b) 7x2y2 (c) 14x2y2 (d) 21x2y

16.      Solve 3x – 4 = – 2x + 16 (a) x = 4 (b) x

= 5 (c) x = 6 (d) x = 8

  1. Solve the inequality 3x + 2 < 23 (a) x<7 (b) x<8 (c) x<21 (d) x<9

Locate the points shown on the grid in the graph below

  • Evaluate 3 x 2 + 1

(a) 29

(b) 19 (c) 7                            8

(d) 8

30

4      5       3

30             30           30                                            7

6

  • The product of 106 and 2.5 is (a) 2620 (b) 265 (c) 3050 (d) 420
    • The square root of 0.01 is (a) 15 (b) 1

10

(c) 12 (d) 10.5

  • Find the value of 9-2 (a) 91 (b) 81 (c)
                                A                                                                 B             E                                         C                             D          

29 (d) 1

5

4

3

2

1

0 1 2 3

4 5 6

7 8 9 10 11 12

81             

6.        Evaluate √6 1 (a) 5 (b) 25 (c) 21 (d) 4

Use the graph above to answer questions 18

– 20

4           3            4               2           5

7.        Find the L.C.M of 4x and 6x (a) 18x (b) 112x (c) 12x (d) 24×2

8.        Divide 420 by 20 (a) 31 (b) 80 (c) 21

(d) 42

  • Simplify 8a – (3a + a) (a) 11a + 1 (b) 24a – 8 (c) 5a + 1 (d) 4a
2  

Reduce 9π‘Žπ‘2 to it lowest term (a) 6ab2

3π‘Ž 𝑏

(b) 𝑏 (c) 3𝑏 (d) π‘Žπ‘2

  1. What is the mathematical name of the shape ABCD? (a) kite (b) rectangle (c) trapezium (d) rhombus
  2. Subtract ab from cd in y axis (a) 18 (b) 20 (c) 46 (d) 18
  3. Find the value of c+d – b+e (a) -5 (b) 6 (c) 5 (d) 10
  4. A

3π‘Ž            π‘Ž                3

  1. A piece of stair carpet is 9.20m long                                                                                          B      E and 0.48m wide. Estimate the area of

the carpet (a) 4.5m2  (b) 5m2 (c)                                       C             D

4.42m2 (d) 5.5m2

What is the name of shape above (a)

  1. Simplify 12π‘₯𝑦2

(a) 2π‘₯

(b) 2π‘₯𝑦2 (c) 2

(d)

kite (b) pentagon (c) rectangle (d)

6π‘₯ 𝑦

12π‘₯𝑦

18π‘₯2𝑦

2

2

3π‘₯𝑦

3𝑦

3π‘₯

parallelogram

22.      Equilateral triangle has its three

13.      Find the value of β€œa” in 5a – 10 = 15 (a) 5 (b) 4 (c) 2 (d) 7

angles equal (a) No (b) yes (c) either f the two (d) none of the above.

23.

X

-1 0 1 2 3 4 5

What is the value of inequality shown above? (a) x>21 (b) xβ‰₯ 4 (c) x ≀ 2 (d) x > 2

  • Find the value of a in 3a – 5 = 25 (a) 10 (b) 15 (c) 5 (d) -10
  • Solve the inequality 3x+2 < 20 (a) x<6 (b) x<8 (c) x<7 (d) x<9
  • Find the value of 0.069 x 0.38 (a) 0.02622 (b) 0.398 (c) 0.00975 (d)

24.      Expand (x-3) (x+5)         (a) x2+8x-15 (b) x2+5x-3x-15 (c) 3×2-5x+3x (d) x2+6×2+3x+10

25.      Solve 3(2x-3) = 15           (a) x = 6 (b) x

= 4 (c) x = 8 (d) x = 10

0.59

Use the following shapes to answer questions 36 – 38

26.

27.

Text Box: 4x - 12

Expand and simplify (a) ax+5a (b) x+5 (c) ax2+10 (d) x2 + 25

Find the inequalities illustrated in the numbers line shown below.

A                   B                        C

  • What is the name of shapes B? (a) isosceles triangle (b) kite (c) pentagon

(d) rectangle

  • How many shapes has in diagram C above? (a) 2 (b) 4 (c) 3 (d) 5
  • What is the name of shapes A? (a) kite

(b) rhombus (c) parallelogram (d) trapezium

  • Find the value for the inequality shown below.

-3     -2    -1     0     1      2     3       4     5                                                                   x

(a) x≀ 5 (b) x ≀ -2 (c) x β‰₯ 3 (d) x>5

28.      Simplify 4π‘₯+1 + π‘₯βˆ’5

(a) 5π‘₯+17 (b) 3π‘₯+16

-5  -4    -3  -2 -1    0    1     2     3  4     5

3            2                     6                      4

(a) X<4 (b) x> 5 (c) x≀ 4 (d) x β‰₯ 3

(c) 2π‘₯+9 (d) 11π‘₯βˆ’13

3                      6                                                                        40.      Change 5 to decimal number (a) 0.625

29.      Reduce 5π‘Ž2𝑏3 to its lowest term (a) 3𝑦                                 8

  • 3 2π‘₯

10π‘Žπ‘

  • 𝑦

3π‘₯

(d) π‘Žπ‘2

2

2π‘₯

(b) 0.75 (c) 0.85 (d) 0.975

30.      Solve 2π‘Ž + 3π‘Ž (a) 19π‘Ž (b) 21π‘Ž (c) 8π‘Ž (d)

3         5              15

7π‘Ž

3

15            15

  • The following shapes belong to the same family EXCEPT (a) rectangle (b) rhombus (c) kite (d) parallelogram
  • If 5 is multiplied by its multiplicative

inverse, the result is (a) 1 (b) – 1 (c) 1

5               7

  • 1

5

JSS2 SECOND TERM MATHEMATICS EXAMINATION QUESTIONS – EDUDELIGHT.COM

Part B

Answer 3 questions only in this part

ii  
ii  

1a.      Simplify the following fractions and reduce its lowest term.

i  

6π‘₯𝑦3

18π‘₯2𝑦 2

9π‘Ž5𝑏3

3π‘Ž3𝑏3

2(π‘₯βˆ’π‘¦)

6(π‘₯βˆ’π‘¦)

b          Simplify       i           π‘₯βˆ’2 x      14        ii

Γ·  

8𝑑                4𝑑

(π‘βˆ’π‘‘)2          (π‘βˆ’π‘‘) 3

7         (π‘₯βˆ’2)2

  • Solve the following algebraic fractions

i 2π‘₯βˆ’3 + 3π‘₯+4

ii (x-6) – 2(π‘₯βˆ’2)

3               2                                                   4

iii. π‘₯βˆ’3 – π‘₯+1 + 5π‘₯

2           3           4

iv. 3 – 2 + 4

π‘₯       3π‘₯

  • Use the linear equation, y = 2x+3 and the table prepared below to plot a straight – line graph. Take the value of x from -3 to +2
X-3-2-1012
Y-3-20357

4a       Represented each of these inequalities in number line (a)     x ≀ 5         (b)                  x β‰₯ -2

(c)       x > 3

b          Solve the following inequalities (a) 8 + 2x > 3 + 5x (b) 5x – 4 > 8

5a       Think of a number add 5 to it and multiply the result by 3, the answer is

36.      What is the number? b  Solve the equation

(i) 5x – 10 – 3x = 2x + 20 – 3x.

c.         2(3βˆ’2π‘₯) + π‘₯

6              4

i.          3π‘₯ – 2π‘₯

ii.          5 – 3

MID-TERM EXAMINATION

J.S. 2                                       Time: 40 minutes

1.        The HCF of 7x3y and 14x2y3 is (a) 14x3y3 (b)14x2y (c) 7x2y (d)7x2y2

2.        Simplify 4π‘₯+ 1π‘₯βˆ’5 (a) 5+3π‘₯ (b) 5π‘₯+3 (c)

8        6                                  2π‘₯      4π‘₯

b.         Solve the following fractions

i.          (x – 2) – 2(π‘₯βˆ’4) 6

ii.         2π‘₯βˆ’3 + 3π‘₯βˆ’8 7           14

3            12                 4                    4

2π‘₯+ 2 (d) 15π‘₯+ 1

4                     12

1.        Find value of y in 3y -6 =12 (a) y=6 (b) y=5 (c) y=9 (d) y=12

2.        Solve 2(2x-3)= 15 (a) 3 (b) 5 (c) -6 (c)

d

  • Solve the equation π‘š + 4 = 1 (a) o (b)

3

13 (c) -9 (d) -13

  • Solve the inequality 3x + 2 < 23 (a)x<21 (b) x<8 (c) x<9 (d) x<7
  • There were at least 8000 people who watched the football match. This can be written in inequality as (a) x β‰₯ 8000 (b) x < 8000 (c) x > 8000 (d) x ≀ 8000
  • The value of x in the diagram below is X =

-4        -3        -2        -1

(a)      X ≀ -1 (b) x β‰₯ -1 (c) x = -1 (d) x -1

2  
2  

Simplify and reduce it to its lowest

term  

2 4 19π‘₯ 𝑦

3π‘₯𝑦

(a)

3π‘₯

𝑦

(2 b)

6π‘₯

𝑦

(c)

2

3π‘₯  

(d)

𝑦

9π‘₯

6𝑦

8. Factorize ab2 – a2b3 + a2bc (a)  a(b-  a2b+ab) (b) ab(b-ab2+ac) (c)ac(b2- ab2+ac) (d) a2b2(b+a2b3+c)

Part B

Answer one question from this section, each question carries equal marks.

1.        Simplify and reduce to its lowest term

i.          12π‘Ž2𝑐3

16π‘Ž3𝑐

ii. 10𝑛2π‘š2

5π‘š3

b.         Solve the  equations i.            4x + 6 = -3x – 8

ii.Β Β Β Β Β Β Β Β  5x – 10 – 3x = 2x + 20 – 3x

JSS2 SECOND TERM MATHEMATICS EXAMINATION QUESTIONS – EDUDELIGHT.COM

SECOND TERM EXAM

J.SS 2

SUBJECT : MATHEMATICS

(1)       Express 1/16 in standard form

(A) 6.25 x 10 (B) 6.25 x 10-1 (C) 6.25 x 10-2 (D) 6.25 x 100

(2)       Simply 5/6 x 4 2/3 Γ· 2 7/9

(A) 2Β½   (B) 1 2/5 (C) 2/7         (D) 5/8

  • Express 15 metres as a percentage of 5 kilometres (A) 3% (B) 0.3% (C) 0.03% (D) 0.003%
  • Find the square root of 3 6/25

(A) 3.234  (B) 1.24  (C) 9/5         (D) 5/9

  • Simply (1/4)2

(A) 16  (B) 1/16  (C) 1/8     (D) 2

  • Round off 0.995 to the nearest hundredth (A) 0.95 (B) 0.94 (C) 1.00 (D) 1.45
  • Simply 8 x 109 divided by 4 x 106

(A) 809/406  (B) 4 x 1015         (C) 4 x 103        (D) 2 x 103

(8)        Simplify -3 + (-3) – (-11)

(A) 17 (B) -17 (C) 5 (D) -5

  •      Simplify (-2) x (-12) (+6)2

(A) 2/3    (B) 3/2 (C) 5/6 (D) -1/7

  • What is the co-efficient of β€˜y’ in the expansion of (6+y) ( 3-y)? (A) 3 (B) 6 (C) -3 (D) -6
  • Express 85 as a binary number

(A) 11101012       (B) 10101012       (C) 11101102 (D) 10111102

(12)      1110112 + 11112 =

(A) 10010102 (B) 11101102 (C) 10011102 (D) 11111112

The heights of 10 students in meters area s follows:

1.1, 1.8, 103, 1.1, 1.4, 1.2, 1.1, 1.3, 1.4, 1.2

Use the information above to answer question 13 – 17

  • Find the median height

(A) 1.2 (B) 1.25 (C) 1.3 (D) 1.4

  • Find the mean height

(A) 1.2 (B) 1.1 (C) 1.3 (D) 1.29

  • Find the range of the set of heights (A) 1.3 (B) 1.1 (C) 0.7 (D) 1.2
  • Find the modal height of the distribution (A) 1.8 (B) 1.3 (C) 1.2 (D) 1.1
  • If a student is picked at random, what is the probability that he is one of the shortest students?

(A) 3/10  (B) 2/5  (C) Β½         (D) 3/5

  • Express 4.55 x 10-3 in ordinary form

(A) 0.00455 (B) 0.0455 (C) 45.5 (D) 455

(19)      Simplify 8- (-2) – (-1)

(A) 16 (B) 11 (C) 5 (D) 3

  • Write the next two numbers in the sequence -4, -6, -8,  –               ,     –       , (A) 10, 12 (B) -7, -12 (C) -12, -10 (D) -10, -12
  • Find the value of x in the diagram below 1510

890

X0

(A) 1200     (B) 1480         (C) 1620     (D) 1800

  • Solve the equation 6a + 7 = 3a + 25 A) 4 (B) 6 (C) 7 (D) 8
  • An isosceles triangle has          number of lines of symmetry (A) 0 (B) 1 (C) 2 (D) 3
  • How many lines of symmetry has an equilateral triangle? (A) 3 (B) 2 (C) 1 (D) 0
  • Round off 0.008251 to 2 significant figures (A) 0.82 (B) 0.83 (C) 0.0083 (D) 0.0082
  • If  a    =         4 x 9 x 16, find the value of a (A) 16 (B) 24 (C) 36 (D) 48

(27)     Solve 1/6 –b = 1/b -5

(A) 11/2 (B) – 9/2 (C) 12/5 (D) 1ΒΎ

  • Change the decimal fraction 0.016 to a common fraction (A) 4/250 (B) 2/125          (C) 4/125 () 1/625
  • Convert 107ten to a number in base two

(A) 10101112 (B) 10111002 (C) 11101112 (D) 11010112

  • Write 394 in Roman numerals
    • CCCIV (B) CCIX (C) CCCICV (D) CCCXCIV
  • A trader bought a book for N500.00 and sold it for N360. Calculate the percentage loss. (A) 18 (B) 30 (C) 28 (D) 36
  • The sum of two consecutive even number is 34. Find the smaller number? (A) 20 (B) 16 (C) 14 (D) 12
  • Calculate the length of the side of a square whose area is 1089cm2

(A) 21cm (B) 23cm (C) 32cm (D) 33cm

  • Express 72 as the product of its factors. Leaving your answer in index form. (A) 22 x 33 (B) 23 x 32 (c) 24 x 32 (d) 22 x 33
  • Find the square root of 42ΒΌ

(A) 6 Β½  (B) 8 Β½  (C) 3 ΒΌ       (D) 7 ΒΌ

  • The value of 62 is

(A) 12 (B) 36 (C) 62 (D) 26

  • Find the range of the following set of numbers, 10, 10, 5, 11, 5, 11, 13, 7, 6 (A) 6 (B) 1 (C) 2 (D) 8
  • Find the L.C.M. of 10ab, 14b2 and 18ab

(A) 14ab2 (B) 630ab2 (C) 360ab2 (d) 180ab2

  • Find the simple interest of N12,000 for 7 Β½ years at 6% per annum? (A) N4500 (B) N5400 (C) N3800 (D) 6160
  • Find the value of x in the diagram below:

(A) 280 (B) 410 (C) 680 (D) 340 SECTION B

Answer seven questions

  1. Simplify the following

(i) X5 x X-2      (ii) m0 x n0        (iii) b3 – b0       (iv) 2a-1 x 3a2      (v) P-2 Γ· p-7

(1b)     Round off the following to 2 significant figures

(i) 26002 (ii) 28336 (iii) 7284 (iv) 14612

Write down the sizes of the lettered angled

  • Copy and complete the table below
ShapeLengthBreadthPerimeterArea
Rectangle2km11km  
Rectangle 12cm 36cm2
Square25mm   
Square  34m 
  • Simplify the following

(a) (-2) x (+12)                           (b) (-6) x (-10)                 (c)            36

– 6                                     – 4                                         (-2) x (-9) (d)        (-3) x (-15)                           (e)                    4 x (-3)

9                                                     – 24

  • A trader buys a kettle for N880 and sells it at a profit of 15%. Find his actual profit and the selling price.

(5b)     A hat is bought for N250 and sold for N220. What is the loss percent?

  • Simplify the following

(a) X + 3  + 4x – 2)                   (b)     7a – 3  –     3a + 5            (c)      4x + 1 – x – 5

5              5                           6                  4                              3            12

(6b)     Solve the following equations

 (a) 4m2m= 4 (b)      3x – 22x + 7 = 0
53 69 
  • I add 55 to a certain number and then divide the sum by 3. The result is four times the first number. Find the number.

(7b)     A car increases its speed steadily over 6 seconds as sown below

Time (s)0123456
Speed (km/h)0152045607590
  • Use a scale of 2cm represents 1 second on the horizontal axis and 2cm represents 10km/h on the vertical axis. Draw a graph of the information.
  • Use your graph to (a) the speed of the car after 2.5s (b) the time taken to reach a speed of 80km/h.
  • (i)         Calculate the length of the third side of the triangle below

13cm

  • Which of the following is a pythogorean triple? (a) (33, 56, 65)                        (b) (15, 30, 35)

(8b)     There are 7 red balls, 8 white balls and 5 blue balls in a box. A ball is selected at random from the box. Find the probability that the ball is

  • White, (b) red (c) blue or red (d) neither blue nor white (e) green

MATHEMATICS EXAM QUESTIONS FOR JSS2 SECOND TERM

One Comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button